milvus/tests/python_client/testcases/test_bulk_insert.py
zhuwenxing b348827102
test: add array data type and parquet file type for bulk insert case (#29030)
add array data type and parquet file type for the bulk insert case

---------

Signed-off-by: zhuwenxing <wenxing.zhu@zilliz.com>
2023-12-13 19:56:38 +08:00

1630 lines
64 KiB
Python

import logging
import time
import pytest
from pymilvus import DataType
import numpy as np
from pathlib import Path
from base.client_base import TestcaseBase
from common import common_func as cf
from common import common_type as ct
from common.milvus_sys import MilvusSys
from common.common_type import CaseLabel, CheckTasks
from utils.util_log import test_log as log
from common.bulk_insert_data import (
prepare_bulk_insert_json_files,
prepare_bulk_insert_new_json_files,
prepare_bulk_insert_numpy_files,
prepare_bulk_insert_parquet_files,
prepare_bulk_insert_csv_files,
DataField as df,
)
default_vec_only_fields = [df.vec_field]
default_multi_fields = [
df.vec_field,
df.int_field,
df.string_field,
df.bool_field,
df.float_field,
df.array_int_field
]
default_vec_n_int_fields = [df.vec_field, df.int_field, df.array_int_field]
# milvus_ns = "chaos-testing"
base_dir = "/tmp/bulk_insert_data"
def entity_suffix(entities):
if entities // 1000000 > 0:
suffix = f"{entities // 1000000}m"
elif entities // 1000 > 0:
suffix = f"{entities // 1000}k"
else:
suffix = f"{entities}"
return suffix
class TestcaseBaseBulkInsert(TestcaseBase):
@pytest.fixture(scope="function", autouse=True)
def init_minio_client(self, minio_host):
Path("/tmp/bulk_insert_data").mkdir(parents=True, exist_ok=True)
self._connect()
self.milvus_sys = MilvusSys(alias='default')
ms = MilvusSys()
minio_port = "9000"
self.minio_endpoint = f"{minio_host}:{minio_port}"
self.bucket_name = ms.index_nodes[0]["infos"]["system_configurations"][
"minio_bucket_name"
]
class TestBulkInsert(TestcaseBaseBulkInsert):
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("is_row_based", [True])
@pytest.mark.parametrize("auto_id", [True, False])
@pytest.mark.parametrize("dim", [128]) # 8, 128
@pytest.mark.parametrize("entities", [100]) # 100, 1000
def test_float_vector_only(self, is_row_based, auto_id, dim, entities):
"""
collection: auto_id, customized_id
collection schema: [pk, float_vector]
Steps:
1. create collection
2. import data
3. verify the data entities equal the import data
4. load the collection
5. verify search successfully
6. verify query successfully
"""
files = prepare_bulk_insert_json_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
is_row_based=is_row_based,
rows=entities,
dim=dim,
auto_id=auto_id,
data_fields=default_vec_only_fields,
force=True,
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
]
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id)
self.collection_wrap.init_collection(c_name, schema=schema)
# import data
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name,
partition_name=None,
files=files,
)
logging.info(f"bulk insert task id:{task_id}")
success, _ = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=300
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt}")
assert success
num_entities = self.collection_wrap.num_entities
log.info(f" collection entities: {num_entities}")
assert num_entities == entities
# verify imported data is available for search
index_params = ct.default_index
self.collection_wrap.create_index(
field_name=df.vec_field, index_params=index_params
)
time.sleep(2)
self.utility_wrap.wait_for_index_building_complete(c_name, timeout=300)
res, _ = self.utility_wrap.index_building_progress(c_name)
log.info(f"index building progress: {res}")
self.collection_wrap.load()
self.collection_wrap.load(_refresh=True)
log.info(f"wait for load finished and be ready for search")
time.sleep(2)
log.info(
f"query seg info: {self.utility_wrap.get_query_segment_info(c_name)[0]}"
)
nq = 2
topk = 2
search_data = cf.gen_vectors(nq, dim)
search_params = ct.default_search_params
res, _ = self.collection_wrap.search(
search_data,
df.vec_field,
param=search_params,
limit=topk,
check_task=CheckTasks.check_search_results,
check_items={"nq": nq, "limit": topk},
)
for hits in res:
ids = hits.ids
results, _ = self.collection_wrap.query(expr=f"{df.pk_field} in {ids}")
assert len(results) == len(ids)
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("is_row_based", [True])
@pytest.mark.parametrize("dim", [128]) # 8
@pytest.mark.parametrize("entities", [100]) # 100
def test_str_pk_float_vector_only(self, is_row_based, dim, entities):
"""
collection schema: [str_pk, float_vector]
Steps:
1. create collection
2. import data
3. verify the data entities equal the import data
4. load the collection
5. verify search successfully
6. verify query successfully
"""
auto_id = False # no auto id for string_pk schema
string_pk = True
files = prepare_bulk_insert_json_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
is_row_based=is_row_based,
rows=entities,
dim=dim,
auto_id=auto_id,
str_pk=string_pk,
data_fields=default_vec_only_fields,
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
fields = [
cf.gen_string_field(name=df.pk_field, is_primary=True),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
]
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id)
self.collection_wrap.init_collection(c_name, schema=schema)
# import data
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name, files=files
)
logging.info(f"bulk insert task ids:{task_id}")
completed, _ = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=300
)
tt = time.time() - t0
log.info(f"bulk insert state:{completed} in {tt}")
assert completed
num_entities = self.collection_wrap.num_entities
log.info(f" collection entities: {num_entities}")
assert num_entities == entities
# verify imported data is available for search
index_params = ct.default_index
self.collection_wrap.create_index(
field_name=df.vec_field, index_params=index_params
)
self.utility_wrap.wait_for_index_building_complete(c_name, timeout=300)
res, _ = self.utility_wrap.index_building_progress(c_name)
log.info(f"index building progress: {res}")
self.collection_wrap.load()
self.collection_wrap.load(_refresh=True)
log.info(f"wait for load finished and be ready for search")
time.sleep(2)
log.info(
f"query seg info: {self.utility_wrap.get_query_segment_info(c_name)[0]}"
)
nq = 3
topk = 2
search_data = cf.gen_vectors(nq, dim)
search_params = ct.default_search_params
time.sleep(2)
res, _ = self.collection_wrap.search(
search_data,
df.vec_field,
param=search_params,
limit=topk,
check_task=CheckTasks.check_search_results,
check_items={"nq": nq, "limit": topk},
)
for hits in res:
ids = hits.ids
expr = f"{df.pk_field} in {ids}"
expr = expr.replace("'", '"')
results, _ = self.collection_wrap.query(expr=expr)
assert len(results) == len(ids)
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("is_row_based", [True])
@pytest.mark.parametrize("auto_id", [True, False])
@pytest.mark.parametrize("dim", [128])
@pytest.mark.parametrize("entities", [3000])
def test_partition_float_vector_int_scalar(
self, is_row_based, auto_id, dim, entities
):
"""
collection: customized partitions
collection schema: [pk, float_vectors, int_scalar]
1. create collection and a partition
2. build index and load partition
3. import data into the partition
4. verify num entities
5. verify index status
6. verify search and query
"""
files = prepare_bulk_insert_json_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
is_row_based=is_row_based,
rows=entities,
dim=dim,
auto_id=auto_id,
data_fields=default_vec_n_int_fields,
file_nums=1,
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
cf.gen_int32_field(name=df.int_field),
cf.gen_array_field(name=df.array_int_field, element_type=DataType.INT32),
]
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id)
self.collection_wrap.init_collection(c_name, schema=schema)
# create a partition
p_name = cf.gen_unique_str("bulk_insert")
m_partition, _ = self.collection_wrap.create_partition(partition_name=p_name)
# build index before bulk insert
index_params = ct.default_index
self.collection_wrap.create_index(
field_name=df.vec_field, index_params=index_params
)
# load before bulk insert
self.collection_wrap.load(partition_names=[p_name])
# import data into the partition
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name,
partition_name=p_name,
files=files,
)
logging.info(f"bulk insert task ids:{task_id}")
success, state = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=300
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt}")
assert success
assert m_partition.num_entities == entities
assert self.collection_wrap.num_entities == entities
log.debug(state)
time.sleep(2)
self.utility_wrap.wait_for_index_building_complete(c_name, timeout=300)
res, _ = self.utility_wrap.index_building_progress(c_name)
log.info(f"index building progress: {res}")
log.info(f"wait for load finished and be ready for search")
self.collection_wrap.load(_refresh=True)
time.sleep(2)
log.info(
f"query seg info: {self.utility_wrap.get_query_segment_info(c_name)[0]}"
)
nq = 10
topk = 5
search_data = cf.gen_vectors(nq, dim)
search_params = ct.default_search_params
res, _ = self.collection_wrap.search(
search_data,
df.vec_field,
param=search_params,
limit=topk,
check_task=CheckTasks.check_search_results,
check_items={"nq": nq, "limit": topk},
)
for hits in res:
ids = hits.ids
results, _ = self.collection_wrap.query(expr=f"{df.pk_field} in {ids}")
assert len(results) == len(ids)
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("is_row_based", [True])
@pytest.mark.parametrize("auto_id", [True, False])
@pytest.mark.parametrize("dim", [128])
@pytest.mark.parametrize("entities", [2000])
def test_binary_vector_only(self, is_row_based, auto_id, dim, entities):
"""
collection schema: [pk, binary_vector]
Steps:
1. create collection
2. create index and load collection
3. import data
4. verify build status
5. verify the data entities
6. load collection
7. verify search successfully
6. verify query successfully
"""
float_vec = False
files = prepare_bulk_insert_json_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
is_row_based=is_row_based,
rows=entities,
dim=dim,
auto_id=auto_id,
float_vector=float_vec,
data_fields=default_vec_only_fields,
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True),
cf.gen_binary_vec_field(name=df.vec_field, dim=dim),
]
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id)
self.collection_wrap.init_collection(c_name, schema=schema)
# build index before bulk insert
binary_index_params = {
"index_type": "BIN_IVF_FLAT",
"metric_type": "JACCARD",
"params": {"nlist": 64},
}
self.collection_wrap.create_index(
field_name=df.vec_field, index_params=binary_index_params
)
# load collection
self.collection_wrap.load()
# import data
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(collection_name=c_name,
files=files)
logging.info(f"bulk insert task ids:{task_id}")
success, _ = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=300
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt}")
assert success
time.sleep(2)
self.utility_wrap.wait_for_index_building_complete(c_name, timeout=300)
res, _ = self.utility_wrap.index_building_progress(c_name)
log.info(f"index building progress: {res}")
# verify num entities
assert self.collection_wrap.num_entities == entities
# verify search and query
log.info(f"wait for load finished and be ready for search")
self.collection_wrap.load(_refresh=True)
time.sleep(2)
search_data = cf.gen_binary_vectors(1, dim)[1]
search_params = {"metric_type": "JACCARD", "params": {"nprobe": 10}}
res, _ = self.collection_wrap.search(
search_data,
df.vec_field,
param=search_params,
limit=1,
check_task=CheckTasks.check_search_results,
check_items={"nq": 1, "limit": 1},
)
for hits in res:
ids = hits.ids
results, _ = self.collection_wrap.query(expr=f"{df.pk_field} in {ids}")
assert len(results) == len(ids)
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("insert_before_bulk_insert", [True, False])
def test_insert_before_or_after_bulk_insert(self, insert_before_bulk_insert):
"""
collection schema: [pk, float_vector]
Steps:
1. create collection
2. create index and insert data or not
3. import data
4. insert data or not
5. verify the data entities
6. verify search and query
"""
bulk_insert_row = 500
direct_insert_row = 3000
dim = 128
files = prepare_bulk_insert_json_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
is_row_based=True,
rows=bulk_insert_row,
dim=dim,
data_fields=[df.pk_field, df.float_field, df.vec_field],
force=True,
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True),
cf.gen_float_field(name=df.float_field),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
]
data = [
[i for i in range(direct_insert_row)],
[np.float32(i) for i in range(direct_insert_row)],
cf.gen_vectors(direct_insert_row, dim=dim),
]
schema = cf.gen_collection_schema(fields=fields)
self.collection_wrap.init_collection(c_name, schema=schema)
# build index
index_params = ct.default_index
self.collection_wrap.create_index(
field_name=df.vec_field, index_params=index_params
)
# load collection
self.collection_wrap.load()
if insert_before_bulk_insert:
# insert data
self.collection_wrap.insert(data)
self.collection_wrap.num_entities
# import data
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name, files=files
)
logging.info(f"bulk insert task ids:{task_id}")
success, states = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=300
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt}")
assert success
if not insert_before_bulk_insert:
# insert data
self.collection_wrap.insert(data)
self.collection_wrap.num_entities
num_entities = self.collection_wrap.num_entities
log.info(f"collection entities: {num_entities}")
assert num_entities == bulk_insert_row + direct_insert_row
# verify index
time.sleep(2)
self.utility_wrap.wait_for_index_building_complete(c_name, timeout=300)
res, _ = self.utility_wrap.index_building_progress(c_name)
log.info(f"index building progress: {res}")
# verify search and query
log.info(f"wait for load finished and be ready for search")
self.collection_wrap.load(_refresh=True)
time.sleep(2)
nq = 3
topk = 10
search_data = cf.gen_vectors(nq, dim=dim)
search_params = ct.default_search_params
res, _ = self.collection_wrap.search(
search_data,
df.vec_field,
param=search_params,
limit=topk,
check_task=CheckTasks.check_search_results,
check_items={"nq": nq, "limit": topk},
)
for hits in res:
ids = hits.ids
expr = f"{df.pk_field} in {ids}"
expr = expr.replace("'", '"')
results, _ = self.collection_wrap.query(expr=expr)
assert len(results) == len(ids)
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("create_index_before_bulk_insert", [True, False])
@pytest.mark.parametrize("loaded_before_bulk_insert", [True, False])
def test_load_before_or_after_bulk_insert(self, loaded_before_bulk_insert, create_index_before_bulk_insert):
"""
collection schema: [pk, float_vector]
Steps:
1. create collection
2. create index and load collection or not
3. import data
4. load collection or not
5. verify the data entities
5. verify the index status
6. verify search and query
"""
if loaded_before_bulk_insert and not create_index_before_bulk_insert:
pytest.skip("can not load collection if index not created")
files = prepare_bulk_insert_json_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
is_row_based=True,
rows=500,
dim=16,
auto_id=True,
data_fields=[df.vec_field],
force=True,
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True),
cf.gen_float_vec_field(name=df.vec_field, dim=16),
]
schema = cf.gen_collection_schema(fields=fields, auto_id=True)
self.collection_wrap.init_collection(c_name, schema=schema)
# build index
index_params = ct.default_index
self.collection_wrap.create_index(
field_name=df.vec_field, index_params=index_params
)
if loaded_before_bulk_insert:
# load collection
self.collection_wrap.load()
# import data
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name, files=files
)
logging.info(f"bulk insert task ids:{task_id}")
success, states = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=300
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt}")
assert success
if not loaded_before_bulk_insert:
# load collection
self.collection_wrap.load()
num_entities = self.collection_wrap.num_entities
log.info(f"collection entities: {num_entities}")
assert num_entities == 500
time.sleep(2)
self.utility_wrap.wait_for_index_building_complete(c_name, timeout=300)
res, _ = self.utility_wrap.index_building_progress(c_name)
log.info(f"index building progress: {res}")
# verify search and query
log.info(f"wait for load finished and be ready for search")
self.collection_wrap.load(_refresh=True)
time.sleep(2)
nq = 3
topk = 10
search_data = cf.gen_vectors(nq, 16)
search_params = ct.default_search_params
res, _ = self.collection_wrap.search(
search_data,
df.vec_field,
param=search_params,
limit=topk,
check_task=CheckTasks.check_search_results,
check_items={"nq": nq, "limit": topk},
)
for hits in res:
ids = hits.ids
expr = f"{df.pk_field} in {ids}"
expr = expr.replace("'", '"')
results, _ = self.collection_wrap.query(expr=expr)
assert len(results) == len(ids)
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("auto_id", [True, False])
@pytest.mark.parametrize("dim", [128]) # 128
@pytest.mark.parametrize("entities", [1000]) # 1000
@pytest.mark.parametrize("enable_dynamic_field", [True, False])
def test_with_all_field_json(self, auto_id, dim, entities, enable_dynamic_field):
"""
collection schema 1: [pk, int64, float64, string float_vector]
data file: vectors.npy and uid.npy,
Steps:
1. create collection
2. import data
3. verify
"""
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True, auto_id=auto_id),
cf.gen_int64_field(name=df.int_field),
cf.gen_float_field(name=df.float_field),
cf.gen_double_field(name=df.double_field),
cf.gen_json_field(name=df.json_field),
cf.gen_array_field(name=df.array_int_field, element_type=DataType.INT64),
cf.gen_array_field(name=df.array_float_field, element_type=DataType.FLOAT),
cf.gen_array_field(name=df.array_string_field, element_type=DataType.VARCHAR),
cf.gen_array_field(name=df.array_bool_field, element_type=DataType.BOOL),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
]
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
files = prepare_bulk_insert_json_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
rows=entities,
dim=dim,
data_fields=data_fields,
enable_dynamic_field=enable_dynamic_field,
force=True,
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
self.collection_wrap.init_collection(c_name, schema=schema)
# import data
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name, files=files
)
logging.info(f"bulk insert task ids:{task_id}")
success, states = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=300
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt} with states:{states}")
assert success
num_entities = self.collection_wrap.num_entities
log.info(f" collection entities: {num_entities}")
assert num_entities == entities
# verify imported data is available for search
index_params = ct.default_index
self.collection_wrap.create_index(
field_name=df.vec_field, index_params=index_params
)
self.collection_wrap.load()
log.info(f"wait for load finished and be ready for search")
time.sleep(2)
# log.info(f"query seg info: {self.utility_wrap.get_query_segment_info(c_name)[0]}")
search_data = cf.gen_vectors(1, dim)
search_params = ct.default_search_params
res, _ = self.collection_wrap.search(
search_data,
df.vec_field,
param=search_params,
limit=1,
output_fields=["*"],
check_task=CheckTasks.check_search_results,
check_items={"nq": 1, "limit": 1},
)
for hit in res:
for r in hit:
fields_from_search = r.fields.keys()
for f in fields:
assert f.name in fields_from_search
if enable_dynamic_field:
assert "name" in fields_from_search
assert "address" in fields_from_search
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("auto_id", [True])
@pytest.mark.parametrize("dim", [2]) # 128
@pytest.mark.parametrize("entities", [2]) # 1000
@pytest.mark.parametrize("enable_dynamic_field", [True])
def test_bulk_insert_all_field_with_new_json_format(self, auto_id, dim, entities, enable_dynamic_field):
"""
collection schema 1: [pk, int64, float64, string float_vector]
data file: vectors.npy and uid.npy,
Steps:
1. create collection
2. import data
3. verify
"""
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True, auto_id=auto_id),
cf.gen_int64_field(name=df.int_field),
cf.gen_float_field(name=df.float_field),
cf.gen_double_field(name=df.double_field),
cf.gen_json_field(name=df.json_field),
cf.gen_array_field(name=df.array_int_field, element_type=DataType.INT64),
cf.gen_array_field(name=df.array_float_field, element_type=DataType.FLOAT),
cf.gen_array_field(name=df.array_string_field, element_type=DataType.VARCHAR),
cf.gen_array_field(name=df.array_bool_field, element_type=DataType.BOOL),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
]
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
files = prepare_bulk_insert_new_json_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
rows=entities,
dim=dim,
data_fields=data_fields,
enable_dynamic_field=enable_dynamic_field,
force=True,
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
self.collection_wrap.init_collection(c_name, schema=schema)
# import data
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name, files=files
)
logging.info(f"bulk insert task ids:{task_id}")
success, states = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=300
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt} with states:{states}")
assert success
num_entities = self.collection_wrap.num_entities
log.info(f" collection entities: {num_entities}")
assert num_entities == entities
# verify imported data is available for search
index_params = ct.default_index
self.collection_wrap.create_index(
field_name=df.vec_field, index_params=index_params
)
self.collection_wrap.load()
log.info(f"wait for load finished and be ready for search")
time.sleep(2)
# log.info(f"query seg info: {self.utility_wrap.get_query_segment_info(c_name)[0]}")
search_data = cf.gen_vectors(1, dim)
search_params = ct.default_search_params
res, _ = self.collection_wrap.search(
search_data,
df.vec_field,
param=search_params,
limit=1,
output_fields=["*"],
check_task=CheckTasks.check_search_results,
check_items={"nq": 1, "limit": 1},
)
for hit in res:
for r in hit:
fields_from_search = r.fields.keys()
for f in fields:
assert f.name in fields_from_search
if enable_dynamic_field:
assert "name" in fields_from_search
assert "address" in fields_from_search
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("auto_id", [True, False])
@pytest.mark.parametrize("dim", [128]) # 128
@pytest.mark.parametrize("entities", [1000]) # 1000
@pytest.mark.parametrize("enable_dynamic_field", [True, False])
def test_bulk_insert_all_field_with_numpy(self, auto_id, dim, entities, enable_dynamic_field):
"""
collection schema 1: [pk, int64, float64, string float_vector]
data file: vectors.npy and uid.npy,
note: numpy file is not supported for array field
Steps:
1. create collection
2. import data
3. verify
"""
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True, auto_id=auto_id),
cf.gen_int64_field(name=df.int_field),
cf.gen_float_field(name=df.float_field),
cf.gen_double_field(name=df.double_field),
cf.gen_json_field(name=df.json_field),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
]
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
files = prepare_bulk_insert_numpy_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
rows=entities,
dim=dim,
data_fields=data_fields,
force=True,
enable_dynamic_field=enable_dynamic_field,
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
self.collection_wrap.init_collection(c_name, schema=schema)
# import data
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name, files=files
)
logging.info(f"bulk insert task ids:{task_id}")
success, states = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=300
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt} with states:{states}")
assert success
num_entities = self.collection_wrap.num_entities
log.info(f" collection entities: {num_entities}")
assert num_entities == entities
# verify imported data is available for search
index_params = ct.default_index
self.collection_wrap.create_index(
field_name=df.vec_field, index_params=index_params
)
self.collection_wrap.load()
log.info(f"wait for load finished and be ready for search")
time.sleep(2)
# log.info(f"query seg info: {self.utility_wrap.get_query_segment_info(c_name)[0]}")
search_data = cf.gen_vectors(1, dim)
search_params = ct.default_search_params
res, _ = self.collection_wrap.search(
search_data,
df.vec_field,
param=search_params,
limit=1,
output_fields=["*"],
check_task=CheckTasks.check_search_results,
check_items={"nq": 1, "limit": 1},
)
for hit in res:
for r in hit:
fields_from_search = r.fields.keys()
for f in fields:
assert f.name in fields_from_search
if enable_dynamic_field:
assert "name" in fields_from_search
assert "address" in fields_from_search
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("auto_id", [True, False])
@pytest.mark.parametrize("dim", [128]) # 128
@pytest.mark.parametrize("entities", [1000]) # 1000
@pytest.mark.parametrize("file_nums", [1])
@pytest.mark.parametrize("array_len", [None, 0, 100])
@pytest.mark.parametrize("enable_dynamic_field", [True, False])
def test_bulk_insert_all_field_with_parquet(self, auto_id, dim, entities, file_nums, array_len, enable_dynamic_field):
"""
collection schema 1: [pk, int64, float64, string float_vector]
data file: vectors.parquet and uid.parquet,
Steps:
1. create collection
2. import data
3. verify
"""
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True, auto_id=auto_id),
cf.gen_int64_field(name=df.int_field),
cf.gen_float_field(name=df.float_field),
cf.gen_double_field(name=df.double_field),
cf.gen_json_field(name=df.json_field),
cf.gen_array_field(name=df.array_int_field, element_type=DataType.INT64),
cf.gen_array_field(name=df.array_float_field, element_type=DataType.FLOAT),
cf.gen_array_field(name=df.array_string_field, element_type=DataType.VARCHAR),
cf.gen_array_field(name=df.array_bool_field, element_type=DataType.BOOL),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
]
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
files = prepare_bulk_insert_parquet_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
rows=entities,
dim=dim,
data_fields=data_fields,
file_nums=file_nums,
array_length=array_len,
enable_dynamic_field=enable_dynamic_field,
force=True,
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
self.collection_wrap.init_collection(c_name, schema=schema)
# import data
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name, files=files
)
logging.info(f"bulk insert task ids:{task_id}")
success, states = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=300
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt} with states:{states}")
assert success
num_entities = self.collection_wrap.num_entities
log.info(f" collection entities: {num_entities}")
assert num_entities == entities
# verify imported data is available for search
index_params = ct.default_index
self.collection_wrap.create_index(
field_name=df.vec_field, index_params=index_params
)
self.collection_wrap.load()
log.info(f"wait for load finished and be ready for search")
time.sleep(2)
# log.info(f"query seg info: {self.utility_wrap.get_query_segment_info(c_name)[0]}")
search_data = cf.gen_vectors(1, dim)
search_params = ct.default_search_params
res, _ = self.collection_wrap.search(
search_data,
df.vec_field,
param=search_params,
limit=1,
output_fields=["*"],
check_task=CheckTasks.check_search_results,
check_items={"nq": 1, "limit": 1},
)
for hit in res:
for r in hit:
fields_from_search = r.fields.keys()
for f in fields:
assert f.name in fields_from_search
if enable_dynamic_field:
assert "name" in fields_from_search
assert "address" in fields_from_search
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("auto_id", [True])
@pytest.mark.parametrize("dim", [128]) # 128
@pytest.mark.parametrize("entities", [1000]) # 1000
@pytest.mark.parametrize("file_nums", [0, 10])
@pytest.mark.parametrize("array_len", [1])
def test_with_wrong_parquet_file_num(self, auto_id, dim, entities, file_nums, array_len):
"""
collection schema 1: [pk, int64, float64, string float_vector]
data file: vectors.parquet and uid.parquet,
Steps:
1. create collection
2. import data
3. verify failure, because only one file is allowed
"""
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True, auto_id=auto_id),
cf.gen_int64_field(name=df.int_field),
cf.gen_float_field(name=df.float_field),
cf.gen_double_field(name=df.double_field),
cf.gen_array_field(name=df.array_int_field, element_type=DataType.INT64),
cf.gen_array_field(name=df.array_float_field, element_type=DataType.FLOAT),
cf.gen_array_field(name=df.array_string_field, element_type=DataType.VARCHAR),
cf.gen_array_field(name=df.array_bool_field, element_type=DataType.BOOL),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
]
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
files = prepare_bulk_insert_parquet_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
rows=entities,
dim=dim,
data_fields=data_fields,
file_nums=file_nums,
array_length=array_len,
force=True,
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id)
self.collection_wrap.init_collection(c_name, schema=schema)
# import data
error = {}
if file_nums == 0:
error = {ct.err_code: 1100, ct.err_msg: "import request is empty: invalid parameter"}
if file_nums > 1:
error = {ct.err_code: 65535, ct.err_msg: "for JSON or parquet file, each task only accepts one file"}
self.utility_wrap.do_bulk_insert(
collection_name=c_name, files=files,
check_task=CheckTasks.err_res, check_items=error
)
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("auto_id", [True, False])
@pytest.mark.parametrize("dim", [128])
@pytest.mark.parametrize("entities", [2000])
@pytest.mark.parametrize("file_nums", [5])
def test_multi_numpy_files_from_diff_folders(
self, auto_id, dim, entities, file_nums
):
"""
collection schema 1: [pk, float_vector]
data file: .npy files in different folders
Steps:
1. create collection, create index and load
2. import data
3. verify that import numpy files in a loop
"""
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True, auto_id=auto_id),
cf.gen_int64_field(name=df.int_field),
cf.gen_float_field(name=df.float_field),
cf.gen_double_field(name=df.double_field),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
]
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id)
self.collection_wrap.init_collection(c_name, schema=schema)
# build index
index_params = ct.default_index
self.collection_wrap.create_index(
field_name=df.vec_field, index_params=index_params
)
# load collection
self.collection_wrap.load()
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
task_ids = []
for i in range(file_nums):
files = prepare_bulk_insert_numpy_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
rows=entities,
dim=dim,
data_fields=data_fields,
file_nums=1,
force=True,
)
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name, files=files
)
task_ids.append(task_id)
success, states = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=300
)
log.info(f"bulk insert state:{success}")
assert success
log.info(f" collection entities: {self.collection_wrap.num_entities}")
assert self.collection_wrap.num_entities == entities * file_nums
# verify search and query
log.info(f"wait for load finished and be ready for search")
self.collection_wrap.load(_refresh=True)
time.sleep(2)
search_data = cf.gen_vectors(1, dim)
search_params = ct.default_search_params
res, _ = self.collection_wrap.search(
search_data,
df.vec_field,
param=search_params,
limit=1,
check_task=CheckTasks.check_search_results,
check_items={"nq": 1, "limit": 1},
)
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("is_row_based", [True])
@pytest.mark.parametrize("auto_id", [True, False])
@pytest.mark.parametrize("par_key_field", [df.int_field, df.string_field])
def test_partition_key_on_json_file(self, is_row_based, auto_id, par_key_field):
"""
collection: auto_id, customized_id
collection schema: [pk, int64, varchar, float_vector]
Steps:
1. create collection with partition key enabled
2. import data
3. verify the data entities equal the import data and distributed by values of partition key field
4. load the collection
5. verify search successfully
6. verify query successfully
"""
dim = 12
entities = 200
files = prepare_bulk_insert_json_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
is_row_based=is_row_based,
rows=entities,
dim=dim,
auto_id=auto_id,
data_fields=default_multi_fields,
force=True,
)
self._connect()
c_name = cf.gen_unique_str("bulk_parkey")
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
cf.gen_int64_field(name=df.int_field, is_partition_key=(par_key_field == df.int_field)),
cf.gen_string_field(name=df.string_field, is_partition_key=(par_key_field == df.string_field)),
cf.gen_bool_field(name=df.bool_field),
cf.gen_float_field(name=df.float_field),
cf.gen_array_field(name=df.array_int_field, element_type=DataType.INT64)
]
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id)
self.collection_wrap.init_collection(c_name, schema=schema, num_partitions=10)
assert len(self.collection_wrap.partitions) == 10
# import data
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name,
partition_name=None,
files=files,
)
logging.info(f"bulk insert task id:{task_id}")
success, _ = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=300
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt}")
assert success
num_entities = self.collection_wrap.num_entities
log.info(f" collection entities: {num_entities}")
assert num_entities == entities
# verify imported data is available for search
index_params = ct.default_index
self.collection_wrap.create_index(
field_name=df.vec_field, index_params=index_params
)
self.collection_wrap.load()
log.info(f"wait for load finished and be ready for search")
time.sleep(10)
log.info(
f"query seg info: {self.utility_wrap.get_query_segment_info(c_name)[0]}"
)
nq = 2
topk = 2
search_data = cf.gen_vectors(nq, dim)
search_params = ct.default_search_params
res, _ = self.collection_wrap.search(
search_data,
df.vec_field,
param=search_params,
limit=topk,
check_task=CheckTasks.check_search_results,
check_items={"nq": nq, "limit": topk},
)
for hits in res:
ids = hits.ids
results, _ = self.collection_wrap.query(expr=f"{df.pk_field} in {ids}")
assert len(results) == len(ids)
# verify data was bulk inserted into different partitions
num_entities = 0
empty_partition_num = 0
for p in self.collection_wrap.partitions:
if p.num_entities == 0:
empty_partition_num += 1
num_entities += p.num_entities
assert num_entities == entities
# verify error when trying to bulk insert into a specific partition
# TODO: enable the error msg assert after issue #25586 fixed
err_msg = "not allow to set partition name for collection with partition key"
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name,
partition_name=self.collection_wrap.partitions[0].name,
files=files,
check_task=CheckTasks.err_res,
check_items={"err_code": 99, "err_msg": err_msg},
)
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("auto_id", [True, False])
@pytest.mark.parametrize("dim", [13])
@pytest.mark.parametrize("entities", [150])
@pytest.mark.parametrize("file_nums", [10])
def test_partition_key_on_multi_numpy_files(
self, auto_id, dim, entities, file_nums
):
"""
collection schema 1: [pk, int64, float_vector, double]
data file: .npy files in different folders
Steps:
1. create collection with partition key enabled, create index and load
2. import data
3. verify that import numpy files in a loop
"""
self._connect()
c_name = cf.gen_unique_str("bulk_ins_parkey")
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True),
cf.gen_int64_field(name=df.int_field, is_partition_key=True),
cf.gen_float_field(name=df.float_field),
cf.gen_double_field(name=df.double_field),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
]
schema = cf.gen_collection_schema(fields=fields)
self.collection_wrap.init_collection(c_name, schema=schema, num_partitions=10)
# build index
index_params = ct.default_index
self.collection_wrap.create_index(
field_name=df.vec_field, index_params=index_params
)
# load collection
self.collection_wrap.load()
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
task_ids = []
for i in range(file_nums):
files = prepare_bulk_insert_numpy_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
rows=entities,
dim=dim,
data_fields=data_fields,
file_nums=1,
force=True,
)
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name, files=files
)
task_ids.append(task_id)
success, states = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=task_ids, timeout=300
)
log.info(f"bulk insert state:{success}")
assert success
log.info(f" collection entities: {self.collection_wrap.num_entities}")
assert self.collection_wrap.num_entities == entities * file_nums
# verify imported data is indexed
success = self.utility_wrap.wait_index_build_completed(c_name)
assert success
# verify search and query
log.info(f"wait for load finished and be ready for search")
self.collection_wrap.load(_refresh=True)
time.sleep(2)
search_data = cf.gen_vectors(1, dim)
search_params = ct.default_search_params
res, _ = self.collection_wrap.search(
search_data,
df.vec_field,
param=search_params,
limit=1,
check_task=CheckTasks.check_search_results,
check_items={"nq": 1, "limit": 1},
)
# verify data was bulk inserted into different partitions
num_entities = 0
empty_partition_num = 0
for p in self.collection_wrap.partitions:
if p.num_entities == 0:
empty_partition_num += 1
num_entities += p.num_entities
assert num_entities == entities * file_nums
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("auto_id", [True, False])
@pytest.mark.parametrize("partition_key_field", [df.int_field, df.string_field])
@pytest.mark.skip("import data via csv is no longer supported")
def test_partition_key_on_csv_file(self, auto_id, partition_key_field):
"""
collection: auto_id, customized_id
collection schema: [pk, float_vector, int64, varchar, bool, float]
Step:
1. create collection with partition key enabled
2. import data
3. verify the data entities equal the import data and distributed by values of partition key field
4. load the collection
5. verify search successfully
6. verify query successfully
"""
dim = 12
entities = 200
files = prepare_bulk_insert_csv_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
rows=entities,
dim=dim,
auto_id=auto_id,
data_fields=default_multi_fields,
force=True
)
self._connect()
c_name = cf.gen_unique_str("bulk_parkey")
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
cf.gen_int64_field(name=df.int_field, is_partition_key=(partition_key_field == df.int_field)),
cf.gen_string_field(name=df.string_field, is_partition_key=(partition_key_field == df.string_field)),
cf.gen_bool_field(name=df.bool_field),
cf.gen_float_field(name=df.float_field),
]
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id)
self.collection_wrap.init_collection(c_name, schema=schema, num_partitions=10)
assert len(self.collection_wrap.partitions) == 10
# import data
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name,
partition_name=None,
files=files,
)
logging.info(f"bulk insert task id:{task_id}")
success, _ = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=300
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt}")
assert success
num_entities = self.collection_wrap.num_entities
log.info(f" collection entities: {num_entities}")
assert num_entities == entities
# verify imported data is available for search
index_params = ct.default_index
self.collection_wrap.create_index(
field_name=df.vec_field, index_params=index_params
)
self.collection_wrap.load()
log.info(f"wait for load finished and be ready for search")
time.sleep(10)
log.info(
f"query seg info: {self.utility_wrap.get_query_segment_info(c_name)[0]}"
)
nq = 2
topk = 2
search_data = cf.gen_vectors(nq, dim)
search_params = ct.default_search_params
res, _ = self.collection_wrap.search(
search_data,
df.vec_field,
param=search_params,
limit=topk,
check_task=CheckTasks.check_search_results,
check_items={"nq": nq, "limit": topk},
)
for hits in res:
ids = hits.ids
results, _ = self.collection_wrap.query(expr=f"{df.pk_field} in {ids}")
assert len(results) == len(ids)
# verify data was bulk inserted into different partitions
num_entities = 0
empty_partition_num = 0
for p in self.collection_wrap.partitions:
if p.num_entities == 0:
empty_partition_num += 1
num_entities += p.num_entities
assert num_entities == entities
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("auto_id", [True, False])
@pytest.mark.parametrize("dim", [128])
@pytest.mark.parametrize("entities", [100])
@pytest.mark.skip("import data via csv is no longer supported")
def test_float_vector_csv(self, auto_id, dim, entities):
"""
collection: auto_id, customized_id
collection schema: [pk, float_vector]
Steps:
1. create collection
2. import data
3. verify the data entities equal the import data
4. load the collection
5. verify search successfully
6. verify query successfully
"""
files = prepare_bulk_insert_csv_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
rows=entities,
dim=dim,
auto_id=auto_id,
data_fields=default_vec_only_fields,
force=True
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
]
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id)
self.collection_wrap.init_collection(c_name, schema=schema)
# import data
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name,
partition_name=None,
files=files
)
logging.info(f"bulk insert task id:{task_id}")
success, _ = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=300
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt}")
num_entities = self.collection_wrap.num_entities
log.info(f"collection entities:{num_entities}")
assert num_entities == entities
# verify imported data is available for search
index_params = ct.default_index
self.collection_wrap.create_index(
field_name=df.vec_field, index_params=index_params
)
time.sleep(2)
self.utility_wrap.wait_for_index_building_complete(c_name, timeout=300)
res, _ = self.utility_wrap.index_building_progress(c_name)
log.info(f"index building progress: {res}")
self.collection_wrap.load()
self.collection_wrap.load(_refresh=True)
log.info(f"wait for load finished and be ready for search")
time.sleep(2)
log.info(
f"query seg info: {self.utility_wrap.get_query_segment_info(c_name)[0]}"
)
nq = 2
topk = 2
search_data = cf.gen_vectors(nq, dim)
search_params = ct.default_search_params
res, _ = self.collection_wrap.search(
search_data,
df.vec_field,
param=search_params,
limit=topk,
check_task=CheckTasks.check_search_results,
check_items={"nq": nq, "limit": topk},
)
for hits in res:
ids = hits.ids
results, _ = self.collection_wrap.query(expr=f"{df.pk_field} in {ids}")
assert len(results) == len(ids)
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("auto_id", [True, False])
@pytest.mark.parametrize("dim", [128])
@pytest.mark.parametrize("entities", [2000])
@pytest.mark.skip("import data via csv is no longer supported")
def test_binary_vector_csv(self, auto_id, dim, entities):
"""
collection: auto_id, customized_id
collection schema: [pk, int64, binary_vector]
Step:
1. create collection
2. create index and load collection
3. import data
4. verify data entities
5. load collection
6. verify search successfully
7. verify query successfully
"""
files = prepare_bulk_insert_csv_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
rows=entities,
dim=dim,
auto_id=auto_id,
float_vector=False,
data_fields=default_vec_only_fields,
force=True
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True),
cf.gen_binary_vec_field(name=df.vec_field, dim=dim)
]
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id)
self.collection_wrap.init_collection(c_name, schema=schema)
# build index before bulk insert
binary_index_params = {
"index_type": "BIN_IVF_FLAT",
"metric_type": "JACCARD",
"params": {"nlist": 64},
}
self.collection_wrap.create_index(
field_name=df.vec_field, index_params=binary_index_params
)
# load collection
self.collection_wrap.load()
# import data
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name,
partition_name=None,
files=files
)
logging.info(f"bulk insert task ids:{task_id}")
success, _ = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=300
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt}")
assert success
time.sleep(2)
self.utility_wrap.wait_for_index_building_complete(c_name, timeout=300)
res, _ = self.utility_wrap.index_building_progress(c_name)
log.info(f"index building progress: {res}")
# verify num entities
assert self.collection_wrap.num_entities == entities
# verify search and query
log.info(f"wait for load finished and be ready for search")
self.collection_wrap.load(_refresh=True)
time.sleep(2)
search_data = cf.gen_binary_vectors(1, dim)[1]
search_params = {"metric_type": "JACCARD", "params": {"nprobe": 10}}
res, _ = self.collection_wrap.search(
search_data,
df.vec_field,
param=search_params,
limit=1,
check_task=CheckTasks.check_search_results,
check_items={"nq": 1, "limit": 1},
)
for hits in res:
ids = hits.ids
results, _ = self.collection_wrap.query(expr=f"{df.pk_field} in {ids}")
assert len(results) == len(ids)
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("auto_id", [True, False])
@pytest.mark.parametrize("dim", [128])
@pytest.mark.parametrize("entities", [2000])
@pytest.mark.skip("import data via csv is no longer supported")
def test_partition_csv(self, auto_id, dim, entities):
"""
collection schema: [pk, int64, string, float_vector]
Step:
1. create collection and partition
2. build index and load partition
3. import data into the partition
4. verify num entities
5. verify index status
6. verify search and query
"""
data_fields = [df.int_field, df.string_field, df.vec_field]
files = prepare_bulk_insert_csv_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
rows=entities,
dim=dim,
auto_id=auto_id,
data_fields=data_fields,
force=True
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert_partition")
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True),
cf.gen_int64_field(name=df.int_field),
cf.gen_string_field(name=df.string_field),
cf.gen_float_vec_field(name=df.vec_field, dim=dim)
]
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id)
self.collection_wrap.init_collection(c_name, schema=schema)
# create a partition
p_name = cf.gen_unique_str("bulk_insert_partition")
m_partition, _ = self.collection_wrap.create_partition(partition_name=p_name)
# build index
index_params = ct.default_index
self.collection_wrap.create_index(
field_name=df.vec_field, index_params=index_params
)
# load before bulk insert
self.collection_wrap.load(partition_names=[p_name])
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name,
partition_name=p_name,
files = files
)
logging.info(f"bulk insert task ids:{task_id}")
success, state = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=300
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt}")
assert success
assert m_partition.num_entities == entities
assert self.collection_wrap.num_entities == entities
log.debug(state)
time.sleep(2)
self.utility_wrap.wait_for_index_building_complete(c_name, timeout=300)
res, _ = self.utility_wrap.index_building_progress(c_name)
log.info(f"index building progress: {res}")
log.info(f"wait for load finished and be ready for search")
self.collection_wrap.load(_refresh=True)
time.sleep(2)
log.info(
f"query seg info: {self.utility_wrap.get_query_segment_info(c_name)[0]}"
)
nq = 10
topk = 5
search_data = cf.gen_vectors(nq, dim)
search_params = ct.default_search_params
res, _ = self.collection_wrap.search(
search_data,
df.vec_field,
param=search_params,
limit=topk,
check_task=CheckTasks.check_search_results,
check_items={"nq": nq, "limit": topk},
)
for hits in res:
ids = hits.ids
results, _ = self.collection_wrap.query(expr=f"{df.pk_field} in {ids}")
assert len(results) == len(ids)