milvus/tests/python_client/testcases/test_compaction.py
ThreadDao 0549414a1b
[skip ci] Modify auto-merge case to L2 and increase timeout (#12683)
Signed-off-by: ThreadDao <yufen.zong@zilliz.com>
2021-12-03 13:37:55 +08:00

888 lines
35 KiB
Python

from time import time, sleep
import pytest
from pymilvus.grpc_gen.common_pb2 import SegmentState
from base.client_base import TestcaseBase
from common import common_func as cf
from common import common_type as ct
from common.common_type import CaseLabel, CheckTasks
from utils.util_log import test_log as log
prefix = "compact"
tmp_nb = 100
# @pytest.mark.skip(reason="Ci failed")
class TestCompactionParams(TestcaseBase):
@pytest.mark.tags(CaseLabel.L1)
def test_compact_without_connection(self):
"""
target: test compact without connection
method: compact after remove connection
expected: raise exception
"""
# init collection with tmp_nb default data
collection_w = self.init_collection_general(prefix, nb=tmp_nb, insert_data=True)[0]
# remove connection and delete
self.connection_wrap.remove_connection(ct.default_alias)
res_list, _ = self.connection_wrap.list_connections()
assert ct.default_alias not in res_list
error = {ct.err_code: 0, ct.err_msg: "should create connect first"}
collection_w.compact(check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L2)
def test_compact_twice(self):
"""
target: test compact twice
method: 1.create with shard_num=1
2.insert and flush twice (two segments)
3.compact
4.insert new data
5.compact
expected: Merge into one segment
"""
# init collection with one shard, insert into two segments
collection_w = self.collection_insert_multi_segments_one_shard(prefix, nb_of_segment=tmp_nb)
# first compact two segments
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans1 = collection_w.get_compaction_plans()[0]
target_1 = c_plans1.plans[0].target
# insert new data
df = cf.gen_default_dataframe_data(tmp_nb)
collection_w.insert(df)
log.debug(collection_w.num_entities)
# second compact
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_state()
c_plans2 = collection_w.get_compaction_plans()[0]
assert target_1 in c_plans2.plans[0].sources
log.debug(c_plans2.plans[0].target)
@pytest.mark.tags(CaseLabel.L2)
def test_compact_partition(self):
"""
target: test compact partition
method: compact partition
expected: Verify partition segments merged
"""
# create collection with shard_num=1, and create partition
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=1)
partition_w = self.init_partition_wrap(collection_wrap=collection_w)
# insert flush twice
for i in range(2):
df = cf.gen_default_dataframe_data(tmp_nb)
partition_w.insert(df)
assert partition_w.num_entities == tmp_nb * (i + 1)
# compact
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans = collection_w.get_compaction_plans()[0]
assert len(c_plans.plans) == 1
assert len(c_plans.plans[0].sources) == 2
target = c_plans.plans[0].target
# verify queryNode load the compacted segments
collection_w.load()
segment_info = self.utility_wrap.get_query_segment_info(collection_w.name)[0]
assert target == segment_info[0].segmentID
@pytest.mark.tags(CaseLabel.L2)
def test_compact_only_growing_segment(self):
"""
target: test compact growing data
method: 1.insert into multi segments without flush
2.compact
expected: No compaction (compact just for sealed data)
"""
# create and insert without flush
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix))
df = cf.gen_default_dataframe_data(tmp_nb)
collection_w.insert(df)
# compact when only growing segment
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans = collection_w.get_compaction_plans()[0]
assert len(c_plans.plans) == 0
collection_w.load()
segments_info = self.utility_wrap.get_query_segment_info(collection_w.name)[0]
for segment_info in segments_info:
assert segment_info.state == SegmentState.Growing
@pytest.mark.tags(CaseLabel.L2)
def test_compact_empty_collection(self):
"""
target: test compact an empty collection
method: compact an empty collection
expected: No exception
"""
# init collection and empty
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix))
# compact
collection_w.compact()
c_plans, _ = collection_w.get_compaction_plans()
assert len(c_plans.plans) == 0
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.parametrize("delete_pos", [1, tmp_nb // 2])
def test_compact_after_delete(self, delete_pos):
"""
target: test delete one entity and compact
method: 1.create with shard_num=1
2.delete one sealed entity, half entities
2.compact
expected: Verify compact result
"""
# create, insert without flush
collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix))
df = cf.gen_default_dataframe_data(tmp_nb)
insert_res, _ = collection_w.insert(df)
# delete single entity, flush
single_expr = f'{ct.default_int64_field_name} in {insert_res.primary_keys[:delete_pos]}'
collection_w.delete(single_expr)
assert collection_w.num_entities == tmp_nb
# compact, get plan
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans = collection_w.get_compaction_plans()[0]
# Delete type compaction just merge insert log and delta log of one segment
# todo assert len(c_plans.plans[0].sources) == 1
collection_w.load()
collection_w.query(single_expr, check_items=CheckTasks.check_query_empty)
res = df.iloc[-1:, :1].to_dict('records')
collection_w.query(f'{ct.default_int64_field_name} in {insert_res.primary_keys[-1:]}',
check_items={'exp_res': res})
@pytest.mark.tags(CaseLabel.L1)
def test_compact_delete_ratio(self):
"""
target: test delete entities reaches ratio and auto-compact
method: 1.create with shard_num=1
2.insert (compact load delta log, not from dmlChannel)
3.delete 20% of nb, flush
expected: Verify auto compaction, merge insert log and delta log
"""
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=1)
df = cf.gen_default_dataframe_data(tmp_nb)
insert_res, _ = collection_w.insert(df)
# delete 20% entities
ratio_expr = f'{ct.default_int64_field_name} in {insert_res.primary_keys[:tmp_nb // ct.compact_delta_ratio_reciprocal]}'
collection_w.delete(ratio_expr)
assert collection_w.num_entities == tmp_nb
# auto_compact
sleep(1)
# Delete type compaction just merge insert log and delta log of one segment
# todo assert len(c_plans.plans[0].sources) == 1
collection_w.load()
collection_w.query(ratio_expr, check_items=CheckTasks.check_query_empty)
res = df.iloc[-1:, :1].to_dict('records')
collection_w.query(f'{ct.default_int64_field_name} in {insert_res.primary_keys[-1:]}',
check_items={'exp_res': res})
@pytest.mark.tags(CaseLabel.L2)
def test_compact_delete_less_ratio(self):
"""
target: test delete entities less ratio and no compact
method: 1.create collection shard_num=1
2.insert without flush
3.delete 10% entities and flush
expected: Verify no compact (can't), delete successfully
"""
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=1)
df = cf.gen_default_dataframe_data(tmp_nb)
insert_res, _ = collection_w.insert(df)
# delete 10% entities, ratio = 0.1
less_ratio_reciprocal = 10
ratio_expr = f'{ct.default_int64_field_name} in {insert_res.primary_keys[:tmp_nb // less_ratio_reciprocal]}'
collection_w.delete(ratio_expr)
assert collection_w.num_entities == tmp_nb
collection_w.load()
collection_w.query(ratio_expr, check_task=CheckTasks.check_query_empty)
@pytest.mark.tags(CaseLabel.L0)
def test_compact_after_delete_all(self):
"""
target: test delete all and compact
method: 1.create with shard_num=1
2.delete all sealed data
3.compact
expected: collection num_entities is close to 0
"""
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=1)
df = cf.gen_default_dataframe_data()
res, _ = collection_w.insert(df)
expr = f'{ct.default_int64_field_name} in {res.primary_keys}'
collection_w.delete(expr)
assert collection_w.num_entities == ct.default_nb
# currently no way to verify whether it is compact after delete,
# because the merge compact plan is generate first
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans()
log.debug(collection_w.num_entities)
collection_w.load()
collection_w.query(expr, check_items=CheckTasks.check_query_empty)
@pytest.mark.skip(reason="TODO")
@pytest.mark.tags(CaseLabel.L2)
def test_compact_delete_max_delete_size(self):
"""
target: test compact delta log reaches max delete size 10MiB
method: todo
expected: auto merge single segment
"""
pass
@pytest.mark.xfail(reason="Issue 12344")
@pytest.mark.tags(CaseLabel.L2)
def test_compact_max_time_interval(self):
"""
target: test auto compact with max interval 60s
method: 1.create with shard_num=1
2.insert flush twice (two segments)
3.wait max_compaction_interval (60s)
expected: Verify compaction results
"""
# create collection shard_num=1, insert 2 segments, each with tmp_nb entities
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=1)
collection_w.compact()
for i in range(2):
df = cf.gen_default_dataframe_data(tmp_nb)
collection_w.insert(df)
assert collection_w.num_entities == tmp_nb * (i + 1)
sleep(61)
# verify queryNode load the compacted segments
collection_w.load()
segment_info = self.utility_wrap.get_query_segment_info(collection_w.name)[0]
class TestCompactionOperation(TestcaseBase):
@pytest.mark.tags(CaseLabel.L2)
def test_compact_both_delete_merge(self):
"""
target: test compact both delete and merge
method: 1.create collection with shard_num=1
2.insert data into two segments
3.delete and flush (new insert)
4.compact
5.load and search
expected:
"""
collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix), shards_num=1)
ids = []
for i in range(2):
df = cf.gen_default_dataframe_data(tmp_nb, start=i * tmp_nb)
insert_res, _ = collection_w.insert(df)
assert collection_w.num_entities == (i + 1) * tmp_nb
ids.extend(insert_res.primary_keys)
expr = f'{ct.default_int64_field_name} in {[0, 2 * tmp_nb - 1]}'
collection_w.delete(expr)
collection_w.insert(cf.gen_default_dataframe_data(1, start=2 * tmp_nb))
assert collection_w.num_entities == 2 * tmp_nb + 1
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans()
# search
sleep(5)
ids.pop(0)
ids.pop(-1)
collection_w.load()
search_res, _ = collection_w.search(cf.gen_vectors(ct.default_nq, ct.default_dim),
ct.default_float_vec_field_name,
ct.default_search_params, ct.default_limit,
check_items={"nq": ct.default_nq,
"ids": ids,
"limit": ct.default_limit})
@pytest.mark.tags(CaseLabel.L1)
def test_compact_after_index(self):
"""
target: test compact after create index
method: 1.insert data into two segments
2.create index
3.compact
4.search
expected: Verify segment info and index info
"""
collection_w = self.collection_insert_multi_segments_one_shard(prefix, nb_of_segment=ct.default_nb, is_dup=False)
# create index
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
log.debug(collection_w.index())
# compact
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans()
# search
collection_w.load()
search_res, _ = collection_w.search(cf.gen_vectors(ct.default_nq, ct.default_dim),
ct.default_float_vec_field_name,
ct.default_search_params, ct.default_limit)
assert len(search_res) == ct.default_nq
for hits in search_res:
assert len(hits) == ct.default_limit
@pytest.mark.tags(CaseLabel.L2)
def test_compact_after_binary_index(self):
"""
target: test compact after create index
method: 1.insert binary data into two segments
2.create binary index
3.compact
4.search
expected: Verify segment info and index info
"""
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=1,
schema=cf.gen_default_binary_collection_schema())
for i in range(2):
df, _ = cf.gen_default_binary_dataframe_data(ct.default_nb)
collection_w.insert(data=df)
assert collection_w.num_entities == (i + 1) * ct.default_nb
# create index
collection_w.create_index(ct.default_binary_vec_field_name, ct.default_binary_index)
log.debug(collection_w.index())
collection_w.load()
search_params = {"metric_type": "JACCARD", "params": {"nprobe": 10}}
vectors = cf.gen_binary_vectors(ct.default_nq, ct.default_dim)[1]
search_res_one, _ = collection_w.search(vectors,
ct.default_binary_vec_field_name,
search_params, ct.default_limit)
assert len(search_res_one) == ct.default_nq
for hits in search_res_one:
assert len(hits) == ct.default_limit
# compact
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans()
# verify index re-build and re-load
search_params = {"metric_type": "L1", "params": {"nprobe": 10}}
search_res_two, _ = collection_w.search(vectors,
ct.default_binary_vec_field_name,
search_params, ct.default_limit,
check_task=CheckTasks.err_res,
check_items={ct.err_code: 1,
ct.err_msg: "Metric type of field index isn't "
"the same with search info"})
# verify search result
search_params = {"metric_type": "JACCARD", "params": {"nprobe": 10}}
search_res_two, _ = collection_w.search(vectors,
ct.default_binary_vec_field_name,
search_params, ct.default_limit)
assert len(search_res_two) == ct.default_nq
for hits in search_res_two:
assert len(hits) == ct.default_limit
@pytest.mark.tags(CaseLabel.L1)
def test_compact_and_index(self):
"""
target: test compact and create index
method: 1.insert data into two segments
2.compact
3.create index
4.load and search
expected: Verify search result and index info
"""
collection_w = self.collection_insert_multi_segments_one_shard(prefix, nb_of_segment=ct.default_nb)
# compact
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans()
# create index
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
log.debug(collection_w.index())
# search
collection_w.load()
search_res, _ = collection_w.search(cf.gen_vectors(ct.default_nq, ct.default_dim),
ct.default_float_vec_field_name,
ct.default_search_params, ct.default_limit)
assert len(search_res) == ct.default_nq
for hits in search_res:
assert len(hits) == ct.default_limit
@pytest.mark.tags(CaseLabel.L1)
def test_compact_delete_and_search(self):
"""
target: test delete and compact segment, and search
method: 1.create collection and insert
2.delete part entities
3.compact
4.load and search
expected: Verify search result
"""
collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix), shards_num=1)
df = cf.gen_default_dataframe_data()
insert_res, _ = collection_w.insert(df)
expr = f'{ct.default_int64_field_name} in {insert_res.primary_keys[:ct.default_nb // 2]}'
collection_w.delete(expr)
assert collection_w.num_entities == ct.default_nb
collection_w.compact()
# search
sleep(2)
collection_w.load()
search_res, _ = collection_w.search(cf.gen_vectors(ct.default_nq, ct.default_dim),
ct.default_float_vec_field_name,
ct.default_search_params, ct.default_limit,
check_task=CheckTasks.check_search_results,
check_items={"nq": ct.default_nq,
"ids": insert_res.primary_keys[ct.default_nb // 2:],
"limit": ct.default_limit}
)
@pytest.mark.tags(CaseLabel.L0)
def test_compact_merge_and_search(self):
"""
target: test compact and search
method: 1.insert data into two segments
2.compact
3.load and search
expected: Verify search result
"""
collection_w = self.collection_insert_multi_segments_one_shard(prefix, nb_of_segment=ct.default_nb)
# compact
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans()
# search
collection_w.load()
search_res, _ = collection_w.search(cf.gen_vectors(ct.default_nq, ct.default_dim),
ct.default_float_vec_field_name,
ct.default_search_params, ct.default_limit)
assert len(search_res) == ct.default_nq
for hits in search_res:
assert len(hits) == ct.default_limit
# @pytest.mark.skip(reason="Todo")
@pytest.mark.tags(CaseLabel.L2)
def test_compact_search_after_delete_channel(self):
"""
target: test search after compact, and queryNode get delete request from channel,
rather than compacted delta log
method: 1.insert, flush and load
2.delete half
3.compact
4.search
expected: No compact, compact get delta log from storage
"""
collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix), shards_num=1)
df = cf.gen_default_dataframe_data()
insert_res, _ = collection_w.insert(df)
assert collection_w.num_entities == ct.default_nb
collection_w.load()
expr = f'{ct.default_int64_field_name} in {insert_res.primary_keys[:ct.default_nb // 2]}'
collection_w.delete(expr)
collection_w.compact()
c_plans = collection_w.get_compaction_plans()[0]
assert len(c_plans.plans) == 0
# search
sleep(2)
collection_w.load()
search_res, _ = collection_w.search(cf.gen_vectors(ct.default_nq, ct.default_dim),
ct.default_float_vec_field_name,
ct.default_search_params, ct.default_limit,
check_task=CheckTasks.check_search_results,
check_items={"nq": ct.default_nq,
"ids": insert_res.primary_keys[ct.default_nb // 2:],
"limit": ct.default_limit}
)
@pytest.mark.tags(CaseLabel.L1)
def test_compact_delete_inside_time_travel(self):
"""
target: test compact inside time_travel range
method: 1.insert data and get ts
2.delete all ids
4.compact
5.search with ts
expected: Verify search result
"""
from pymilvus import utility
collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix), shards_num=1)
# insert and get tt
df = cf.gen_default_dataframe_data(tmp_nb)
insert_res, _ = collection_w.insert(df)
tt = utility.mkts_from_hybridts(insert_res.timestamp, milliseconds=0.)
# delete all
expr = f'{ct.default_int64_field_name} in {insert_res.primary_keys}'
delete_res, _ = collection_w.delete(expr)
log.debug(collection_w.num_entities)
collection_w.compact()
collection_w.load()
search_one, _ = collection_w.search(df[ct.default_float_vec_field_name][:1].to_list(),
ct.default_float_vec_field_name,
ct.default_search_params, ct.default_limit,
travel_timestamp=tt)
assert 0 in search_one[0].ids
@pytest.mark.xfail(reason="Issue 12450")
@pytest.mark.tags(CaseLabel.L3)
def test_compact_delete_outside_time_travel(self):
"""
target: test compact outside time_travel range
method: 1.create and insert
2.get time stamp
3.delete
4.compact after compact_retention_duration
5.load and search with travel time tt
expected: Empty search result
"""
from pymilvus import utility
collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix), shards_num=1)
# insert
df = cf.gen_default_dataframe_data(tmp_nb)
insert_res, _ = collection_w.insert(df)
tt = utility.mkts_from_hybridts(insert_res.timestamp, milliseconds=0.)
expr = f'{ct.default_int64_field_name} in {insert_res.primary_keys}'
delete_res, _ = collection_w.delete(expr)
log.debug(collection_w.num_entities)
# ensure compact remove delta data that delete outside retention range
# sleep(ct.compact_retention_duration)
sleep(60)
collection_w.compact()
collection_w.load()
# search with travel_time tt
search_res, _ = collection_w.search(df[ct.default_float_vec_field_name][:1].to_list(),
ct.default_float_vec_field_name,
ct.default_search_params, ct.default_limit,
travel_timestamp=tt)
log.debug(search_res[0].ids)
assert len(search_res[0]) == 0
@pytest.mark.tags(CaseLabel.L0)
def test_compact_merge_two_segments(self):
"""
target: test compact merge two segments
method: 1.create with shard_num=1
2.insert and flush
3.insert and flush again
4.compact
5.load
expected: Verify segments are merged
"""
num_of_segment = 2
# create collection shard_num=1, insert 2 segments, each with tmp_nb entities
collection_w = self.collection_insert_multi_segments_one_shard(prefix, num_of_segment, tmp_nb)
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans = collection_w.get_compaction_plans()[0]
# verify the two segments are merged into one
assert len(c_plans.plans) == 1
assert len(c_plans.plans[0].sources) == 2
target = c_plans.plans[0].target
# verify queryNode load the compacted segments
collection_w.load()
segment_info = self.utility_wrap.get_query_segment_info(collection_w.name)[0]
assert target == segment_info[0].segmentID
@pytest.mark.tags(CaseLabel.L2)
def test_compact_no_merge(self):
"""
target: test compact when no segments merge
method: 1.create with shard_num=1
2.insert and flush
3.compact and search
expected: No exception
"""
# create collection
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=1)
df = cf.gen_default_dataframe_data(tmp_nb)
collection_w.insert(df)
assert collection_w.num_entities == tmp_nb
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans, _ = collection_w.get_compaction_plans()
assert len(c_plans.plans) == 0
@pytest.mark.tags(CaseLabel.L2)
def test_compact_merge_multi_segments(self):
"""
target: test compact and merge multi small segments
method: 1.create with shard_num=1
2.insert one and flush (multi times)
3.compact
4.load and search
expected: Verify segments info
"""
# greater than auto-merge threshold 10
num_of_segment = ct.compact_segment_num_threshold + 1
# create collection shard_num=1, insert 11 segments, each with one entity
collection_w = self.collection_insert_multi_segments_one_shard(prefix, num_of_segment=num_of_segment)
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans = collection_w.get_compaction_plans()[0]
assert len(c_plans.plans[0].sources) == 2
target = c_plans.plans[0].target
collection_w.load()
segments_info = self.utility_wrap.get_query_segment_info(collection_w.name)[0]
assert len(segments_info) == 1
assert segments_info[0].segmentID == target
@pytest.mark.tags(CaseLabel.L2)
def test_compact_merge_inside_time_travel(self):
"""
target: test compact and merge segments inside time_travel range
method: search with time travel after merge compact
expected: Verify segments inside time_travel merged
"""
from pymilvus import utility
# create collection shard_num=1, insert 2 segments, each with tmp_nb entities
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=1)
# insert twice
df1 = cf.gen_default_dataframe_data(tmp_nb)
collection_w.insert(df1)[0]
assert collection_w.num_entities == tmp_nb
df2 = cf.gen_default_dataframe_data(tmp_nb, start=tmp_nb)
insert_two = collection_w.insert(df2)[0]
assert collection_w.num_entities == tmp_nb * 2
tt = utility.mkts_from_hybridts(insert_two.timestamp, milliseconds=0.1)
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans()[0]
collection_w.load()
search_res, _ = collection_w.search(df2[ct.default_float_vec_field_name][:1].to_list(),
ct.default_float_vec_field_name,
ct.default_search_params, ct.default_limit,
travel_timestamp=tt)
assert tmp_nb in search_res[0].ids
assert len(search_res[0]) == ct.default_limit
@pytest.mark.tags(CaseLabel.L2)
def test_compact_threshold_auto_merge(self):
"""
target: test num (segment_size < 1/2Max) reaches auto-merge threshold 10
method: 1.create with shard_num=1
2.insert flush 10 times (merge threshold 10)
3.wait for compaction, load
expected: Get query segments into to verify segments auto-merged into one
"""
threshold = ct.compact_segment_num_threshold
# create collection shard_num=1, insert 10 segments, each with one entity
collection_w = self.collection_insert_multi_segments_one_shard(prefix, num_of_segment=threshold)
# Estimated auto-merging takes 30s
cost = 60
collection_w.load()
start = time()
while True:
sleep(5)
segments_info = self.utility_wrap.get_query_segment_info(collection_w.name)[0]
# verify segments reaches threshold, auto-merge ten segments into one
if len(segments_info) == 1:
break
end = time()
if end - start > cost:
raise BaseException(1, "Ccompact auto-merge more than 60s")
@pytest.mark.tags(CaseLabel.L2)
def test_compact_less_threshold_no_merge(self):
"""
target: test compact the num of segments that size less than 1/2Max, does not reach the threshold
method: 1.create collection with shard_num = 1
2.insert flush 9 times (segments threshold 10)
3.after a while, load
expected: Verify segments no merge
"""
less_threshold = ct.compact_segment_num_threshold - 1
# create collection shard_num=1, insert 9 segments, each with one entity
collection_w = self.collection_insert_multi_segments_one_shard(prefix, num_of_segment=less_threshold)
sleep(3)
# load and verify no auto-merge
collection_w.load()
segments_info = self.utility_wrap.get_query_segment_info(collection_w.name)[0]
assert len(segments_info) == less_threshold
@pytest.mark.skip(reason="Todo")
@pytest.mark.tags(CaseLabel.L2)
def test_compact_multi_collections(self):
"""
target: test compact multi collections with merge
method: create 50 collections, add entities into them and compact in turn
expected: No exception
"""
pass
@pytest.mark.tags(CaseLabel.L1)
def test_compact_and_insert(self):
"""
target: test insert after compact
method: 1.create and insert with flush
2.delete and compact
3.insert new data
4.load and search
expected: Verify search result and segment info
"""
# create collection shard_num=1, insert 2 segments, each with tmp_nb entities
collection_w = self.collection_insert_multi_segments_one_shard(prefix, nb_of_segment=tmp_nb)
# compact two segments
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans()
# insert new data, verify insert flush successfully
df = cf.gen_default_dataframe_data(tmp_nb)
collection_w.insert(df)
assert collection_w.num_entities == tmp_nb * 3
@pytest.mark.tags(CaseLabel.L1)
def test_compact_and_delete(self):
"""
target: test delete after compact
method: 1.delete half and compact
2.load and query
3.delete and query
expected: Verify deleted ids
"""
# init collection with one shard, insert into two segments
collection_w = self.collection_insert_multi_segments_one_shard(prefix, is_dup=False)
# compact and complete
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans()
# delete and query
expr = f'{ct.default_int64_field_name} in {[0]}'
collection_w.delete(expr)
collection_w.load()
collection_w.query(expr, check_task=CheckTasks.check_query_empty)
expr_1 = f'{ct.default_int64_field_name} in {[1]}'
collection_w.query(expr_1, check_task=CheckTasks.check_query_results, check_items={'exp_res': [{'int64': 1}]})
@pytest.mark.tags(CaseLabel.L2)
def test_compact_cross_shards(self):
"""
target: test compact cross shards
method: 1.create with shard_num=2
2.insert once and flush (two segments, belonging to two shards)
3.compact and completed
expected: Verify no compact
"""
# insert into two segments with two shard
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=2)
df = cf.gen_default_dataframe_data(tmp_nb)
collection_w.insert(df)
assert collection_w.num_entities == tmp_nb
# compact
collection_w.compact()
collection_w.wait_for_compaction_completed(timeout=1)
c_plans = collection_w.get_compaction_plans()[0]
# Actually no merged
assert len(c_plans.plans) == 0
@pytest.mark.tags(CaseLabel.L2)
def test_compact_cross_partition(self):
"""
target: test compact cross partitions
method: 1.create with shard_num=1
2.create partition and insert, flush
3.insert _default partition and flush
4.compact
expected: Verify no compact
"""
# create collection and partition
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=1)
partition_w = self.init_partition_wrap(collection_wrap=collection_w)
# insert
df = cf.gen_default_dataframe_data(tmp_nb)
collection_w.insert(df)
assert collection_w.num_entities == tmp_nb
partition_w.insert(df)
assert collection_w.num_entities == tmp_nb * 2
# compact
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans = collection_w.get_compaction_plans()[0]
# Actually no merged
assert len(c_plans.plans) == 0
collection_w.load()
segments_info = self.utility_wrap.get_query_segment_info(collection_w.name)[0]
assert segments_info[0].partitionID != segments_info[-1].partitionID