mirror of
https://gitee.com/milvus-io/milvus.git
synced 2024-12-05 21:39:19 +08:00
d0dd962a2f
use restful api to do bulk insert Signed-off-by: zhuwenxing <wenxing.zhu@zilliz.com>
408 lines
16 KiB
Python
408 lines
16 KiB
Python
import logging
|
|
import time
|
|
import pytest
|
|
from pymilvus import DataType
|
|
import numpy as np
|
|
from pathlib import Path
|
|
from base.client_base import TestcaseBase
|
|
from common import common_func as cf
|
|
from common import common_type as ct
|
|
from common.milvus_sys import MilvusSys
|
|
from common.common_type import CaseLabel, CheckTasks
|
|
from utils.util_log import test_log as log
|
|
from common.bulk_insert_data import (
|
|
prepare_bulk_insert_json_files,
|
|
prepare_bulk_insert_new_json_files,
|
|
prepare_bulk_insert_numpy_files,
|
|
prepare_bulk_insert_parquet_files,
|
|
prepare_bulk_insert_csv_files,
|
|
DataField as df,
|
|
)
|
|
import json
|
|
import requests
|
|
import time
|
|
import uuid
|
|
from utils.util_log import test_log as logger
|
|
from minio import Minio
|
|
from minio.error import S3Error
|
|
|
|
|
|
def logger_request_response(response, url, tt, headers, data, str_data, str_response, method):
|
|
if len(data) > 2000:
|
|
data = data[:1000] + "..." + data[-1000:]
|
|
try:
|
|
if response.status_code == 200:
|
|
if ('code' in response.json() and response.json()["code"] == 200) or (
|
|
'Code' in response.json() and response.json()["Code"] == 0):
|
|
logger.debug(
|
|
f"\nmethod: {method}, \nurl: {url}, \ncost time: {tt}, \nheader: {headers}, \npayload: {str_data}, \nresponse: {str_response}")
|
|
else:
|
|
logger.debug(
|
|
f"\nmethod: {method}, \nurl: {url}, \ncost time: {tt}, \nheader: {headers}, \npayload: {data}, \nresponse: {response.text}")
|
|
else:
|
|
logger.debug(
|
|
f"method: \nmethod: {method}, \nurl: {url}, \ncost time: {tt}, \nheader: {headers}, \npayload: {data}, \nresponse: {response.text}")
|
|
except Exception as e:
|
|
logger.debug(
|
|
f"method: \nmethod: {method}, \nurl: {url}, \ncost time: {tt}, \nheader: {headers}, \npayload: {data}, \nresponse: {response.text}, \nerror: {e}")
|
|
|
|
|
|
class Requests:
|
|
def __init__(self, url=None, api_key=None):
|
|
self.url = url
|
|
self.api_key = api_key
|
|
self.headers = {
|
|
'Content-Type': 'application/json',
|
|
'Authorization': f'Bearer {self.api_key}',
|
|
'RequestId': str(uuid.uuid1())
|
|
}
|
|
|
|
def update_headers(self):
|
|
headers = {
|
|
'Content-Type': 'application/json',
|
|
'Authorization': f'Bearer {self.api_key}',
|
|
'RequestId': str(uuid.uuid1())
|
|
}
|
|
return headers
|
|
|
|
def post(self, url, headers=None, data=None, params=None):
|
|
headers = headers if headers is not None else self.update_headers()
|
|
data = json.dumps(data)
|
|
str_data = data[:200] + '...' + data[-200:] if len(data) > 400 else data
|
|
t0 = time.time()
|
|
response = requests.post(url, headers=headers, data=data, params=params)
|
|
tt = time.time() - t0
|
|
str_response = response.text[:200] + '...' + response.text[-200:] if len(response.text) > 400 else response.text
|
|
logger_request_response(response, url, tt, headers, data, str_data, str_response, "post")
|
|
return response
|
|
|
|
def get(self, url, headers=None, params=None, data=None):
|
|
headers = headers if headers is not None else self.update_headers()
|
|
data = json.dumps(data)
|
|
str_data = data[:200] + '...' + data[-200:] if len(data) > 400 else data
|
|
t0 = time.time()
|
|
if data is None or data == "null":
|
|
response = requests.get(url, headers=headers, params=params)
|
|
else:
|
|
response = requests.get(url, headers=headers, params=params, data=data)
|
|
tt = time.time() - t0
|
|
str_response = response.text[:200] + '...' + response.text[-200:] if len(response.text) > 400 else response.text
|
|
logger_request_response(response, url, tt, headers, data, str_data, str_response, "get")
|
|
return response
|
|
|
|
def put(self, url, headers=None, data=None):
|
|
headers = headers if headers is not None else self.update_headers()
|
|
data = json.dumps(data)
|
|
str_data = data[:200] + '...' + data[-200:] if len(data) > 400 else data
|
|
t0 = time.time()
|
|
response = requests.put(url, headers=headers, data=data)
|
|
tt = time.time() - t0
|
|
str_response = response.text[:200] + '...' + response.text[-200:] if len(response.text) > 400 else response.text
|
|
logger_request_response(response, url, tt, headers, data, str_data, str_response, "put")
|
|
return response
|
|
|
|
def delete(self, url, headers=None, data=None):
|
|
headers = headers if headers is not None else self.update_headers()
|
|
data = json.dumps(data)
|
|
str_data = data[:200] + '...' + data[-200:] if len(data) > 400 else data
|
|
t0 = time.time()
|
|
response = requests.delete(url, headers=headers, data=data)
|
|
tt = time.time() - t0
|
|
str_response = response.text[:200] + '...' + response.text[-200:] if len(response.text) > 400 else response.text
|
|
logger_request_response(response, url, tt, headers, data, str_data, str_response, "delete")
|
|
return response
|
|
|
|
|
|
class ImportJobClient(Requests):
|
|
|
|
def __init__(self, endpoint, token):
|
|
super().__init__(url=endpoint, api_key=token)
|
|
self.endpoint = endpoint
|
|
self.api_key = token
|
|
self.db_name = None
|
|
self.headers = self.update_headers()
|
|
|
|
def update_headers(self):
|
|
headers = {
|
|
'Content-Type': 'application/json',
|
|
'Authorization': f'Bearer {self.api_key}',
|
|
'RequestId': str(uuid.uuid1())
|
|
}
|
|
return headers
|
|
|
|
def list_import_jobs(self, payload, db_name="default"):
|
|
payload["dbName"] = db_name
|
|
data = payload
|
|
url = f'{self.endpoint}/v2/vectordb/jobs/import/list'
|
|
response = self.post(url, headers=self.update_headers(), data=data)
|
|
res = response.json()
|
|
return res
|
|
|
|
def create_import_jobs(self, payload):
|
|
url = f'{self.endpoint}/v2/vectordb/jobs/import/create'
|
|
response = self.post(url, headers=self.update_headers(), data=payload)
|
|
res = response.json()
|
|
return res
|
|
|
|
def get_import_job_progress(self, task_id):
|
|
payload = {
|
|
"jobId": task_id
|
|
}
|
|
url = f'{self.endpoint}/v2/vectordb/jobs/import/get_progress'
|
|
response = self.post(url, headers=self.update_headers(), data=payload)
|
|
res = response.json()
|
|
return res
|
|
|
|
def wait_import_job_completed(self, task_id_list, timeout=1800):
|
|
success = False
|
|
success_states = {}
|
|
t0 = time.time()
|
|
while time.time() - t0 < timeout:
|
|
for task_id in task_id_list:
|
|
res = self.get_import_job_progress(task_id)
|
|
if res['data']['state'] == "Completed":
|
|
success_states[task_id] = True
|
|
else:
|
|
success_states[task_id] = False
|
|
time.sleep(5)
|
|
# all task success then break
|
|
if all(success_states.values()):
|
|
success = True
|
|
break
|
|
states = []
|
|
for task_id in task_id_list:
|
|
res = self.get_import_job_progress(task_id)
|
|
states.append({
|
|
"task_id": task_id,
|
|
"state": res['data']
|
|
})
|
|
return success, states
|
|
|
|
|
|
default_vec_only_fields = [df.vec_field]
|
|
default_multi_fields = [
|
|
df.vec_field,
|
|
df.int_field,
|
|
df.string_field,
|
|
df.bool_field,
|
|
df.float_field,
|
|
df.array_int_field
|
|
]
|
|
default_vec_n_int_fields = [df.vec_field, df.int_field, df.array_int_field]
|
|
|
|
|
|
# milvus_ns = "chaos-testing"
|
|
base_dir = "/tmp/bulk_insert_data"
|
|
|
|
|
|
def entity_suffix(entities):
|
|
if entities // 1000000 > 0:
|
|
suffix = f"{entities // 1000000}m"
|
|
elif entities // 1000 > 0:
|
|
suffix = f"{entities // 1000}k"
|
|
else:
|
|
suffix = f"{entities}"
|
|
return suffix
|
|
|
|
|
|
class TestcaseBaseBulkInsert(TestcaseBase):
|
|
import_job_client = None
|
|
@pytest.fixture(scope="function", autouse=True)
|
|
def init_minio_client(self, minio_host):
|
|
Path("/tmp/bulk_insert_data").mkdir(parents=True, exist_ok=True)
|
|
self._connect()
|
|
self.milvus_sys = MilvusSys(alias='default')
|
|
ms = MilvusSys()
|
|
minio_port = "9000"
|
|
self.minio_endpoint = f"{minio_host}:{minio_port}"
|
|
self.bucket_name = ms.index_nodes[0]["infos"]["system_configurations"][
|
|
"minio_bucket_name"
|
|
]
|
|
|
|
@pytest.fixture(scope="function", autouse=True)
|
|
def init_import_client(self, host, port, user, password):
|
|
self.import_job_client = ImportJobClient(f"http://{host}:{port}", f"{user}:{password}")
|
|
|
|
|
|
class TestBulkInsertPerf(TestcaseBaseBulkInsert):
|
|
|
|
@pytest.mark.tags(CaseLabel.L3)
|
|
@pytest.mark.parametrize("auto_id", [True])
|
|
@pytest.mark.parametrize("dim", [128]) # 128
|
|
@pytest.mark.parametrize("file_size", [1, 10, 15]) # file size in GB
|
|
@pytest.mark.parametrize("file_nums", [1])
|
|
@pytest.mark.parametrize("array_len", [100])
|
|
@pytest.mark.parametrize("enable_dynamic_field", [False])
|
|
def test_bulk_insert_all_field_with_parquet(self, auto_id, dim, file_size, file_nums, array_len, enable_dynamic_field):
|
|
"""
|
|
collection schema 1: [pk, int64, float64, string float_vector]
|
|
data file: vectors.parquet and uid.parquet,
|
|
Steps:
|
|
1. create collection
|
|
2. import data
|
|
3. verify
|
|
"""
|
|
fields = [
|
|
cf.gen_int64_field(name=df.pk_field, is_primary=True, auto_id=auto_id),
|
|
cf.gen_int64_field(name=df.int_field),
|
|
cf.gen_float_field(name=df.float_field),
|
|
cf.gen_double_field(name=df.double_field),
|
|
cf.gen_json_field(name=df.json_field),
|
|
cf.gen_array_field(name=df.array_int_field, element_type=DataType.INT64),
|
|
cf.gen_array_field(name=df.array_float_field, element_type=DataType.FLOAT),
|
|
cf.gen_array_field(name=df.array_string_field, element_type=DataType.VARCHAR, max_length=200),
|
|
cf.gen_array_field(name=df.array_bool_field, element_type=DataType.BOOL),
|
|
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
|
|
]
|
|
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
|
|
files = prepare_bulk_insert_parquet_files(
|
|
minio_endpoint=self.minio_endpoint,
|
|
bucket_name=self.bucket_name,
|
|
rows=3000,
|
|
dim=dim,
|
|
data_fields=data_fields,
|
|
file_size=file_size,
|
|
row_group_size=None,
|
|
file_nums=file_nums,
|
|
array_length=array_len,
|
|
enable_dynamic_field=enable_dynamic_field,
|
|
force=True,
|
|
)
|
|
self._connect()
|
|
c_name = cf.gen_unique_str("bulk_insert")
|
|
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
|
|
self.collection_wrap.init_collection(c_name, schema=schema)
|
|
payload = {
|
|
"collectionName": c_name,
|
|
"files": [files],
|
|
}
|
|
|
|
# import data
|
|
payload = {
|
|
"collectionName": c_name,
|
|
"files": [files],
|
|
}
|
|
t0 = time.time()
|
|
rsp = self.import_job_client.create_import_jobs(payload)
|
|
job_id_list = [rsp["data"]["jobId"]]
|
|
logging.info(f"bulk insert job ids:{job_id_list}")
|
|
success, states = self.import_job_client.wait_import_job_completed(job_id_list, timeout=1800)
|
|
tt = time.time() - t0
|
|
log.info(f"bulk insert state:{success} in {tt} with states:{states}")
|
|
assert success
|
|
|
|
@pytest.mark.tags(CaseLabel.L3)
|
|
@pytest.mark.parametrize("auto_id", [True])
|
|
@pytest.mark.parametrize("dim", [128]) # 128
|
|
@pytest.mark.parametrize("file_size", [1, 10, 15]) # file size in GB
|
|
@pytest.mark.parametrize("file_nums", [1])
|
|
@pytest.mark.parametrize("array_len", [100])
|
|
@pytest.mark.parametrize("enable_dynamic_field", [False])
|
|
def test_bulk_insert_all_field_with_json(self, auto_id, dim, file_size, file_nums, array_len, enable_dynamic_field):
|
|
"""
|
|
collection schema 1: [pk, int64, float64, string float_vector]
|
|
data file: vectors.parquet and uid.parquet,
|
|
Steps:
|
|
1. create collection
|
|
2. import data
|
|
3. verify
|
|
"""
|
|
fields = [
|
|
cf.gen_int64_field(name=df.pk_field, is_primary=True, auto_id=auto_id),
|
|
cf.gen_int64_field(name=df.int_field),
|
|
cf.gen_float_field(name=df.float_field),
|
|
cf.gen_double_field(name=df.double_field),
|
|
cf.gen_json_field(name=df.json_field),
|
|
cf.gen_array_field(name=df.array_int_field, element_type=DataType.INT64),
|
|
cf.gen_array_field(name=df.array_float_field, element_type=DataType.FLOAT),
|
|
cf.gen_array_field(name=df.array_string_field, element_type=DataType.VARCHAR, max_length=200),
|
|
cf.gen_array_field(name=df.array_bool_field, element_type=DataType.BOOL),
|
|
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
|
|
]
|
|
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
|
|
files = prepare_bulk_insert_new_json_files(
|
|
minio_endpoint=self.minio_endpoint,
|
|
bucket_name=self.bucket_name,
|
|
rows=3000,
|
|
dim=dim,
|
|
data_fields=data_fields,
|
|
file_size=file_size,
|
|
file_nums=file_nums,
|
|
array_length=array_len,
|
|
enable_dynamic_field=enable_dynamic_field,
|
|
force=True,
|
|
)
|
|
self._connect()
|
|
c_name = cf.gen_unique_str("bulk_insert")
|
|
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
|
|
self.collection_wrap.init_collection(c_name, schema=schema)
|
|
|
|
# import data
|
|
payload = {
|
|
"collectionName": c_name,
|
|
"files": [files],
|
|
}
|
|
t0 = time.time()
|
|
rsp = self.import_job_client.create_import_jobs(payload)
|
|
job_id_list = [rsp["data"]["jobId"]]
|
|
logging.info(f"bulk insert job ids:{job_id_list}")
|
|
success, states = self.import_job_client.wait_import_job_completed(job_id_list, timeout=1800)
|
|
tt = time.time() - t0
|
|
log.info(f"bulk insert state:{success} in {tt} with states:{states}")
|
|
assert success
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L3)
|
|
@pytest.mark.parametrize("auto_id", [True])
|
|
@pytest.mark.parametrize("dim", [128]) # 128
|
|
@pytest.mark.parametrize("file_size", [1, 10, 15]) # file size in GB
|
|
@pytest.mark.parametrize("file_nums", [1])
|
|
@pytest.mark.parametrize("enable_dynamic_field", [False])
|
|
def test_bulk_insert_all_field_with_numpy(self, auto_id, dim, file_size, file_nums, enable_dynamic_field):
|
|
"""
|
|
collection schema 1: [pk, int64, float64, string float_vector]
|
|
data file: vectors.parquet and uid.parquet,
|
|
Steps:
|
|
1. create collection
|
|
2. import data
|
|
3. verify
|
|
"""
|
|
fields = [
|
|
cf.gen_int64_field(name=df.pk_field, is_primary=True, auto_id=auto_id),
|
|
cf.gen_int64_field(name=df.int_field),
|
|
cf.gen_float_field(name=df.float_field),
|
|
cf.gen_double_field(name=df.double_field),
|
|
cf.gen_json_field(name=df.json_field),
|
|
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
|
|
]
|
|
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
|
|
files = prepare_bulk_insert_numpy_files(
|
|
minio_endpoint=self.minio_endpoint,
|
|
bucket_name=self.bucket_name,
|
|
rows=3000,
|
|
dim=dim,
|
|
data_fields=data_fields,
|
|
file_size=file_size,
|
|
file_nums=file_nums,
|
|
enable_dynamic_field=enable_dynamic_field,
|
|
force=True,
|
|
)
|
|
self._connect()
|
|
c_name = cf.gen_unique_str("bulk_insert")
|
|
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
|
|
self.collection_wrap.init_collection(c_name, schema=schema)
|
|
|
|
# import data
|
|
payload = {
|
|
"collectionName": c_name,
|
|
"files": [files],
|
|
}
|
|
t0 = time.time()
|
|
rsp = self.import_job_client.create_import_jobs(payload)
|
|
job_id_list = [rsp["data"]["jobId"]]
|
|
logging.info(f"bulk insert job ids:{job_id_list}")
|
|
success, states = self.import_job_client.wait_import_job_completed(job_id_list, timeout=1800)
|
|
tt = time.time() - t0
|
|
log.info(f"bulk insert state:{success} in {tt} with states:{states}")
|
|
assert success
|