Go to file
godchen c4f0837d84
Fix insert pks overwrite (#12365)
Signed-off-by: godchen <qingxiang.chen@zilliz.com>
2021-11-29 22:01:41 +08:00
.github [skip ci] Add rule to add ci-passed for test scripts (#12400) 2021-11-29 21:19:45 +08:00
build [skip ci] Remove idle time for publishimages incase idle pod destroy the build (#12321) 2021-11-29 10:41:17 +08:00
cmd Fix health check when disconnect to etcd (#12292) 2021-11-26 11:39:16 +08:00
configs Add datacoord GC configuration (#12061) 2021-11-18 22:29:40 +08:00
deployments [skip ci]Update grafana panel (#12390) 2021-11-29 20:05:41 +08:00
docs [skip ci] Fix typos in design doc (#12354) 2021-11-29 21:05:46 +08:00
githooks [skip ci]Update OWNERS files (#11898) 2021-11-16 15:41:11 +08:00
internal Fix insert pks overwrite (#12365) 2021-11-29 22:01:41 +08:00
scripts [skip ci] Add comment for go-run-unittest.sh (#11948) 2021-11-17 10:37:16 +08:00
tests [skip ci]Add func to wait pods ready (#12408) 2021-11-29 21:13:55 +08:00
tests-deprecating [skip ci]Update OWNERS files (#11898) 2021-11-16 15:41:11 +08:00
tools comment unused import (#8993) 2021-10-02 09:36:31 +08:00
.clang-format
.clang-tidy
.clang-tidy-ignore
.contributors
.devcontainer.json
.env Update Builder image changes (#10124) 2021-10-20 17:30:36 +08:00
.gitignore [skip ci] Add comment in gitinore (#11742) 2021-11-12 19:27:32 +08:00
.golangci.yml
CHANGELOG.md [skip ci]Update typo in changelog md (#11710) 2021-11-15 18:57:22 +08:00
CODE_OF_CONDUCT.md [skip ci]Format markdown doc for CODE_OF_CONDUCT.md (#10042) 2021-10-17 16:44:40 +08:00
CODE_REVIEW.md [skip ci]Fix doc error (#11632) 2021-11-11 13:28:47 +08:00
codecov.yml [skip ci] Add ignore message of **/*.proto (#10214) 2021-10-19 20:36:53 +08:00
CONTRIBUTING.md Update docs of CONTRIBUTING (#11300) 2021-11-05 13:29:27 +08:00
DEVELOPMENT.md [skip ci]Update typo in development md (#11586) 2021-11-10 20:26:58 +08:00
docker-compose.yml [skip ci] Fix etcd in docker-compose (#8949) 2021-09-30 16:32:11 +08:00
go.mod update gomod (#12010) 2021-11-18 11:39:12 +08:00
go.sum Fix searchResultBufFlags & queryResultBufFlags memory leak (#11585) 2021-11-16 14:13:12 +08:00
LICENSE
Makefile Fix seek query channel error (#10723) 2021-10-27 23:00:24 +08:00
milvus20vs1x.md [skip ci]Update milvus2.0 release time (#11231) 2021-11-04 15:26:20 +08:00
OWNERS [skip ci]Update OWNERS files (#11898) 2021-11-16 15:41:11 +08:00
OWNERS_ALIASES [skip ci]Add maintainer congqixia (#12150) 2021-11-20 09:25:13 +08:00
README_CN.md Update all contributors 2021-11-29 07:58:13 +00:00
README.md Update all contributors 2021-11-29 07:58:13 +00:00
ruleguard.rules.go Fix ruleguard warning (#10837) 2021-10-28 20:05:09 +08:00

Join Hacktoberfest with Milvus

What is Milvus?

Milvus is an open-source vector database built to power embedding similarity search and AI applications. Milvus makes unstructured data search more accessible, and provides a consistent user experience regardless of the deployment environment.

Milvus 2.0 is a cloud-native vector database with storage and computation separated by design. All components in this refactored version of Milvus are stateless to enhance elasticity and flexibility. For more architecture details, see Milvus Architecture Overview.

Milvus was released under the open-source Apache License 2.0 in October 2019. It is currently a graduate project under LF AI & Data Foundation.

Key features

Millisecond search on trillion vector datasets Average latency measured in milliseconds on trillion vector datasets.
Simplified unstructured data management
  • Rich APIs designed for data science workflows.
  • Consistent user experience across laptop, local cluster, and cloud.
  • Embed real-time search and analytics into virtually any application.
  • Reliable, always on vector database Milvus built-in replication and failover/failback features ensure data and applications can maintain business continuity in the event of a disruption.
    Highly scalable and elastic Component-level scalability makes it possible to scale up and down on demand. Milvus can autoscale at a component level according to the load type, making resource scheduling much more efficient.
    Hybrid search In addition to vectors, Milvus supports data types such as Boolean, integers, floating-point numbers, and more. A collection in Milvus can hold multiple fields for accommodating different data features or properties. Milvus pairs scalar filtering with powerful vector similarity search to offer a modern, flexible platform for analyzing unstructured data. Check https://github.com/milvus-io/milvus/wiki/Hybrid-Search for examples and boolean expression rules.
    Unified Lambda structure Milvus combines stream and batch processing for data storage to balance timeliness and efficiency. Its unified interface makes vector similarity search a breeze.
    Community supported, industry recognized With over 1,000 enterprise users, 8,000+ stars on GitHub, and an active open-source community, youre not alone when you use Milvus. As a graduate project under the LF AI & Data Foundation, Milvus has institutional support.

    Quick start

    Install Milvus

    Build Milvus from source code

    Check the requirements first.

    go: 1.15
    cmake: >=3.18
    gcc: 7.5
    protobuf: >=3.7
    

    Clone Milvus repo and build.

    # Clone github repository.
    $ git clone https://github.com/milvus-io/milvus.git
    
    # Install third-party dependencies.
    $ cd milvus/
    $ ./scripts/install_deps.sh
    
    # Compile Milvus.
    $ make
    

    For the full story, see developer's documentation.

    Important

    The master branch is for the development of Milvus v2.0. On March 9th, 2021, we released Milvus v1.0, the first stable version of Milvus with long-term support. To use Milvus v1.0, switch to branch 1.0.

    Milvus 2.0 vs. 1.x: Cloud-native, distributed architecture, highly scalable, and more

    See Milvus 2.0 vs. 1.x for more information.

    Real world demos

    Image search Chatbots Chemical structure search

    Images made searchable. Instantaneously return the most similar images from a massive database.

    Chatbots

    Interactive digital customer service that saves users time and businesses money.

    Blazing fast similarity search, substructure search, or superstructure search for a specified molecule.

    Bootcamps

    Milvus bootcamp is designed to expose users to both the simplicity and depth of the vector database. Discover how to run benchmark tests as well as build similarity search applications spanning chatbots, recommendation systems, reverse image search, molecular search, and much more.

    Contributing

    Contributions to Milvus are welcome from everyone. See Guidelines for Contributing for details on submitting patches and the contribution workflow. See our community repository to learn about our governance and access more community resources.

    All contributors




    Documentation

    For guidance on installation, development, deployment, and administration, check out Milvus Docs.

    SDK

    The implemented SDK and its API documentation are listed below:

    Milvus insight

    Milvus insight provides an intuitive and efficient GUI for Milvus.

    Community

    Join the Milvus community on Slack to share your suggestions, advice, and questions with our engineering team.

    Miluvs Slack Channel

    You can also check out our FAQ page to discover solutions or answers to your issues or questions.

    Subscribe to Milvus mailing lists:

    Follow Milvus on social media:

    Join Us

    Zilliz, the company behind Milvus, is actively hiring algorithm, database, full-stack developers and solution engineers to build the next-generation open-source data fabric.

    Reference

    Reference to cite when you use Milvus in a research paper:

    @inproceedings{2021milvus,
      title={Milvus: A Purpose-Built Vector Data Management System},
      author={Wang, Jianguo and Yi, Xiaomeng and Guo, Rentong and Jin, Hai and Xu, Peng and Li, Shengjun and Wang, Xiangyu and Guo, Xiangzhou and Li, Chengming and Xu, Xiaohai and others},
      booktitle={Proceedings of the 2021 International Conference on Management of Data},
      pages={2614--2627},
      year={2021}
    }
    

    Acknowledgments

    Milvus adopts dependencies from the following:

    • Thanks to FAISS for the excellent search library.
    • Thanks to etcd for providing great open-source key-value store tools.
    • Thanks to Pulsar for its wonderful distributed pub-sub messaging system.
    • Thanks to RocksDB for the powerful storage engines.