mirror of
https://gitee.com/milvus-io/milvus.git
synced 2024-12-04 21:09:06 +08:00
cf3202ea85
Signed-off-by: zhuwenxing <wenxing.zhu@zilliz.com>
139 lines
4.8 KiB
Python
139 lines
4.8 KiB
Python
# Copyright (C) 2019-2020 Zilliz. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
|
|
# with the License. You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software distributed under the License
|
|
# is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
|
|
# or implied. See the License for the specific language governing permissions and limitations under the License.
|
|
|
|
from collections import defaultdict
|
|
import random
|
|
import numpy as np
|
|
import time
|
|
import argparse
|
|
from pymilvus import (
|
|
connections, list_collections,
|
|
FieldSchema, CollectionSchema, DataType,
|
|
Collection, utility
|
|
)
|
|
TIMEOUT = 120
|
|
|
|
|
|
def hello_milvus(collection_name):
|
|
import time
|
|
# create collection
|
|
dim = 128
|
|
default_fields = [
|
|
FieldSchema(name="int64", dtype=DataType.INT64, is_primary=True),
|
|
FieldSchema(name="float", dtype=DataType.FLOAT),
|
|
FieldSchema(name="varchar", dtype=DataType.VARCHAR, max_length=65535),
|
|
FieldSchema(name="float_vector", dtype=DataType.FLOAT_VECTOR, dim=dim)
|
|
]
|
|
default_schema = CollectionSchema(fields=default_fields, description="test collection")
|
|
if utility.has_collection(collection_name):
|
|
print("collection is exist")
|
|
collection = Collection(name=collection_name)
|
|
default_schema = collection.schema
|
|
dim = [field.params['dim'] for field in default_schema.fields if field.dtype in [101, 102]][0]
|
|
print(f"\nCreate collection...")
|
|
collection = Collection(name=collection_name, schema=default_schema)
|
|
# insert data
|
|
nb = 3000
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nb)]
|
|
t0 = time.time()
|
|
|
|
collection.insert(
|
|
[
|
|
[i for i in range(nb)],
|
|
[np.float32(i) for i in range(nb)],
|
|
[str(i) for i in range(nb)],
|
|
vectors
|
|
]
|
|
)
|
|
t1 = time.time()
|
|
print(f"\nInsert {nb} vectors cost {t1 - t0:.4f} seconds")
|
|
|
|
t0 = time.time()
|
|
print(f"\nGet collection entities...")
|
|
collection.flush()
|
|
print(collection.num_entities)
|
|
t1 = time.time()
|
|
print(f"\nGet collection entities cost {t1 - t0:.4f} seconds")
|
|
|
|
# create index and load table
|
|
default_index = {"index_type": "IVF_SQ8", "metric_type": "L2", "params": {"nlist": 64}}
|
|
print(f"\nCreate index...")
|
|
t0 = time.time()
|
|
collection.create_index(field_name="float_vector", index_params=default_index)
|
|
t1 = time.time()
|
|
print(f"\nCreate index cost {t1 - t0:.4f} seconds")
|
|
print("\nGet replicas number")
|
|
try:
|
|
replicas_info = collection.get_replicas()
|
|
replica_number = len(replicas_info.groups)
|
|
print(f"\nReplicas number is {replica_number}")
|
|
except Exception as e:
|
|
print(str(e))
|
|
replica_number = 1
|
|
print(f"\nload collection...")
|
|
t0 = time.time()
|
|
collection.load(replica_number=replica_number)
|
|
t1 = time.time()
|
|
print(f"\nload collection cost {t1 - t0:.4f} seconds")
|
|
|
|
# load and search
|
|
topK = 5
|
|
search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
|
|
t0 = time.time()
|
|
print(f"\nSearch...")
|
|
# define output_fields of search result
|
|
res = collection.search(
|
|
vectors[-2:], "float_vector", search_params, topK,
|
|
"int64 > 100", output_fields=["int64", "float"], timeout=TIMEOUT
|
|
)
|
|
t1 = time.time()
|
|
print(f"search cost {t1 - t0:.4f} seconds")
|
|
# show result
|
|
for hits in res:
|
|
for hit in hits:
|
|
# Get value of the random value field for search result
|
|
print(hit, hit.entity.get("float"))
|
|
|
|
# query
|
|
expr = "int64 in [2,4,6,8]"
|
|
output_fields = ["int64", "float"]
|
|
res = collection.query(expr, output_fields, timeout=TIMEOUT)
|
|
sorted_res = sorted(res, key=lambda k: k['int64'])
|
|
for r in sorted_res:
|
|
print(r)
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='host ip')
|
|
parser.add_argument('--host', type=str, default='127.0.0.1', help='host ip')
|
|
args = parser.parse_args()
|
|
# add time stamp
|
|
print(f"\nStart time: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))}")
|
|
# create connection
|
|
connections.connect(host=args.host, port="19530")
|
|
print("\nList collections...")
|
|
all_collections = list_collections()
|
|
print(all_collections)
|
|
all_collections = [c_name for c_name in all_collections if "Checker" in c_name]
|
|
m = defaultdict(list)
|
|
for c_name in all_collections:
|
|
prefix = c_name.split("_")[0]
|
|
if len(m[prefix]) <= 5:
|
|
m[prefix].append(c_name)
|
|
selected_collections = []
|
|
for v in m.values():
|
|
selected_collections.extend(v)
|
|
print("selected_collections is")
|
|
print(selected_collections)
|
|
cnt = 0
|
|
for collection_name in selected_collections:
|
|
print(f"check collection {collection_name}")
|
|
hello_milvus(collection_name)
|